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Abstract

A linear instability model for multiple spatially peri-
odic supersonic rectangular jets is solved using Floquet-

Bloch theory. The disturbance environment is investi-

gated using a two dimensional perturbation of a mean
flow. For all cases large temporal growth rates are found.
This work is motivated by an increase in mixing found
in experimental measurements of spatially periodic su-

personic rectangular jets with phase-locked screech. The

results obtained in this paper suggests that phase-locked
screech or edge tones may produce correlated spatially
periodic jet flow downstream of the nozzles which creates

a large span wise multi-nozzle region where a disturbance
can propagate. The large temporal growth rates for ed-

dies obtained by model calculation herein are related to
the increased mixing since eddies are the primary mech-
anism that transfer energy from the mean flow to the

large turbulent structures. Calculations of growth rates
are presented for a range of Mach numbers and nozzle

spacings corresponding to experimental test conditions
where screech synchronized phase locking was observed.

The model may be of significant scientific and engineering
value in the quest to understand and construct supersonic
mixer-ejector nozzles which provide increased mixing and
reduced noise.

I. Introduction

Interest in proving the economic and environmental
feasibility of a high-speed civil transport has stimulated

studies of mixing enhancement in lobed mixer-ejector
nozzles. By enhancing mixing the ejector length can be
reduced with the same amount of noise suppression. In

order to obtain information on such flows simpler configu-
rations are studied. In particular, a simple mixer nozzle
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configuration consisting of multiple rectangular nozzles
with a synchronized screech instability was studied by

Taghavi and Raman t and Raman and Taghavi 2'3. This
nozzle showed increased mixing with the jets synchro-

nized. The same behavior is shown in a study of the

effect of edge tones on multiple jet mixing of high-speed
flows by Krothapalli et. al. 4 using the nozzle described
by Krothapalli et. al. 5.

A study of an array of subsonic jets imbedded in a
square network by Villermaux and tlopfinger 6 and Viller-

maux, Gagne, and [topfinger 7 found the existence of
propagating waves along tile lattice. In addition, it was

found that two jets separated by a distance up to five
meshes had correlated oscillations.

In this paper, tile temporal dynamics produced by the

collective interaction of jets is discussed. It is proposed
that at some point before tile jets merge it is possible to

investigate the flow dynamics using a model based on a
two dimensional perturbation of a mean flow. This paper

shows a large-scale propagation of instabilities with high
growth rates may occur.

For single nozzles a reduction in mixing and growth
rates with increasing Mach number has been demon-
strated experimentally by many investigators s-12. Corre-

sponding linear stability analysis of single nozzles shows
results that are similar to the experimental studies 13-1s .

This is attributed to the fact that eddies are the primary
mechaifism that transfer energy from the mean flow to

the large turbulent structures. However, the following
study is based on the idea that these experimental and
theoretical results do not apply to the mixing of multi-

ple supersonic rectangular jets with phase locked screech.

This paper is based on a linear stability analysis of com-
pressible periodic parallel jet flows which was undertaken
to obtain results related to lobed mixer nozzles. In this

study, the lobed nozzle design concept is extrapolated in
a one dimensional manner to arrive at an array of parallel

rectangular nozzles separated by a distance s where the
smaller dimension of each nozzle is wN and tile longer di-
mension b is taken to be infinite. Note that it is assumed

that even widely spaced rectangular jets which are phase-

locked by screech are coherent spatially at some distance
from the nozzle. Consequently, in this linear stability

analysis of pertubations about the mean flow, it is the
collective behavior of compressible periodic parallel jet
flow that determines the nozzle interaction.

For each operating condition, tile unstable wave is as-



sumedto grow at the maximum rate possible. In this

paper, the behavior of the maximum growth rate solu-
tions is discussed and only the trace of solutions for the

group that produced the maximum growth rate for each
case studied is presented.

II. Results

The nozzle configuration is shown in Figure I. In this

paper, the flow is compressible and the velocity profile

perpendicular to the flow is adapted from an equation
used by Monkewitz le in a study of the absolute and con-
vective instability of two-dimensional wakes. A discus-

sion of the problem formulation is given in Appendix A.

A typical velocity profile is shown in Figure 2.
The linear stability analysis is done using Floquet-

Bloch theory. It is assumed that in the region of in-
terest a coherent wave can propagate and that this wave
can be described in terms of a mean flow perturbation.
This type of analysis has been applied by Beaumont 17

to an incompressible flow with a sinusoidal velocity pro-
file perpendicular to the flow. This analysis procedure is
discussed in Appendix B.

Stability information is obtained using the flow model
described in Appendix A and the Floquet-Bloch method
described in Appendix B. The flow disturbance is charac-

terized by a real wave number, I¢, and a complex relative

phase velocity , _ = cr + 2_i. For a given value of jet
Mach number, Mj, ratio of inter jet spacing to rectangu-

lar nozzle smallest dimension (s/w/v), and ci, a range of ]c
values are studied to determine if a growing disturbance
characterized by a periodicity paramater Fi and a con-

vective phase velocity cr exists. The computer program
evaluates solutions at one hundred fixed values of cr in

the range -1 < _r < 1 . A solutions at a given value _
is accepted if the calculated value of Fr is smaller than

1.E - 06 and the calculated value of 6 is less than 2 (
6 is defined in Appendix B). All solutions are tabulated

and a further search is made in the _ region where F_ is
smallest to find the desired result. The reported results

at each value of _: are limited to three: no solution, one
solution or two solutions. It is possible that more than

two solutions exist. The model was developed to study

wave growth, vSi = 0.5leVi over a range of Mach numbers

and flow geometries for compressible periodic parallel jet

flow when the flow is correlated between the jets.
Tim Mach number and spacing for the conditions stud-

ied correspond to cases where phase locking was achieved
using synchronized screech by Taghavi and Raman I and
Raman and Taghavi _,3.

For each condition studied, solutions for a range of ]c
values at a given value of ci were produced to find the

region where the growth rate maximum, wi = 0.5_'_i, of
the unstable wave occurred. The value of ci used were

between 0. and 1. using steps of 0.1. The value of ]c

used started at 0 and increased by 0.005. In general,

blocks of 50 k points were examined at a one time and
the calculation for a particular value of_i was abandoned

if the current block of 50 points and the previous block
of 50 points had no solutions.

To provide some information on the solution space, the
trace of_ and ri for the group of solutions at the value of

_i that produced the maximum growth rate for each case

studied is presented. Figures 3 through 17 show typical
stability plots of phase speed _r, and ri as a function of

wave growth, wi = 0.5]c_i.

The following features of these plots are noteworthy.
Examination of the plots shows that at low Math num-

bers the solutions are double valued at the lower growth
rates (Figs. 3, 4, 15 and 16). The trace of the plots of 6_

and ri have breaks where no solution was found ( Figs.
3, 4, 8, 13 and 15). The same Math number (1.4) was
used to calculate the results shown in Figure 6 ( '--=5 16

td/ff

) and Figure 17 ( _-_-=5 ). The slight difference in spac-
ing produces small _ifferences in the plots of _ and ri

indicating that the calculations are internally consistent.
However, the most important feature is that for the

solution with the maximum growth rate the value of Fi

tends to be zero. This means that the periodicity of
tile fastest growing instability wave is the same as the

periodicity of the nozzle geometry. Consequently. it is
possible to achieve large growth rates without an infinite

array of nozzles. This analysis indicates an array of four
or five nozzles should behave like an array of forty or fifty
nozzles.

The stability model is not related to screech, llowever,

it does depend on the presence of a large span wise multi-
nozzle region where a coherent wave can propagate. In
this paper, it is suggested that this region can be created

by phase locked screech or edge-tones.

For each case, the solution values at (wi),_,_ are given
in Table I which shows the fully expanded Mach number,
Mj, the flow profile parameter, A, and the ratio of the

ratio of nozzle spacing, s, to narrow width of rectangular
nozzle, WN, ,the real and imaginary values of the phase

speed _, the parameter Fi, the wave number it,the growth

rate, (&)m_, and the scale factor L*. The nozzle width,
WN, is 0.0069m.

The growth rates are large. In addition, examination of

table I indicates a tendency for the value of_i to decrease

with Mach number. Itowever, the corresponding value of
k tends to increase with Mach number. Consequently,

the maximum value of the growth rate, (_3i),,,_-, does

not decrease drastically with Mach number. These large
growth rates of spatially coherent waves might explain
tile increased mixing observed when the flow from lin-

ear arrays of rectangular nozzles is synchronized by edge

tones as observed by Krothapalli 4 or by screech Taghavi
and I-¢.aman t, and Rarnan and Taghavi 2,3 since eddies

are the primary mechanism that transfer energy from
the mean flow to the large turbulent structures.



III. Concluding Remarks

A linear instability model for a large span wise multi-

nozzle region where the disturbance environment can be

investigated using a two dimensional perturbation of the
mean flow has been presented. The results indicate that
an instability wave can occur and that this type of disur-

brance has a large growth rate. In all the cases studied

the most unstable wave has the same periodicity as the

nozzle array.
It is conjectured that multiple supersonic rectangular

jets phase-locked by screech or subsonic jets phase-locked

by edge tones may exhibit a high growth rates down-
stream of the nozzles. Consequently, the model may

explain the increase in mixing observed in multiple jets
phase locked by screech or edge tones.

This work was conducted with the expectation that

multi-jets with synchronized screech could provide in-

creased mixing and reduced aerodynmaic acoustic noise.
The model may be of significant scientific and engineering

value in the quest to understand and construct supersonic
mixer-ejector nozzles.

Table I. Calculation results'at (w,),.°_

w%.
0.5 1.24295 5.0 0.9 -2 878747E-I

0.8 1.24295 5.0 0.8 -2.551930E- I

1.25 1.294735 4.0 0.6 -2.475852E--I

1.3 1.28551 4.15 0.6 -2.584690E-I

1.35 I. 22414 5.5 0.6 - 1.648727F_,-- 1

1.4 1.24295 5.0 0.6 -2 084984E-I

1.4 1.23649 5 16 0.6 - 1.860186F_,- 1

1,45 1.173897 75 0.5 -2.394745E-2

1.5 1.19688 6 43 0.5 -9.262075E-2

1.55 1.139382 I0 0 0.4 8.287612F_,-2

1.6 I. 160343 8.32 0.4 9.901901 E,-3

1.65 1.1258595 i 1.5 0.3 8.145849E,.-2

1.7 1.14881 916977 0.3 1.510411E,-2

1.75 1,111395 137 0.3 i .772602E_ I

1.8 1.13665 10.27 ,0.3 7.961790E-2

9.755581E.-3

2.955246E--2

1.028344F_,-I

3.495140F_,-2

3.762793E,-2

7.771379F_,-2

1.184881 F_,-1

2.976108F__,- 2

6.455086F_,-2

9.056775F_,--2

1.042738F:,- 1

3.566117E.-2

9.125563E.-2

9.963684E-3

4.183396E.-3

k

1.205

1.345

2.06

1.935

2.06

1.41

1.935

2.060

1.91

2.245

2.240

2.55

2.615

1.89

2.095

(_l)m,¢

0.54225

0.538

0.618

0.5805

0.4785

0.423

0.411

0.515

0.411

0.449

0.448

0.3825

0.39225

0.2835

0.31425

L*

3.6605E,-4

3.6605E,.- 4

5.4908F_,-3

5.6555F_,-3

7.1380.E-3

3.6605F-,-4

6.7647E-3

9.3344E,-3

8.1593E,-3

1.2079E,- 2

1.0234E.-3

1.3727F,,- 2

1.1168F_,-2

1.6143E-2

1.2376E,-2



Appendix A: Formulation of the problem

Let (U(y),O,O) be the velocity of a steady plane-
parallel flow, where the x-axis is in the direction of the
flow and

U(y) = 0 + _-h(y)

where Ut is the velocity outside the jet, U2 is the mean
centerline jet velocity, 0 = v_t_+_Ez AU = U2 - Ut, and2 )
h(y) is the velocity profile function which varies from -1
to 1.

The flow field is perturbed by introducing wave distur-

bances in the velocity and pressure with amplitudes that
are a function of Y- Thus,

(a, _)e, _)

= (fi(_)), _(_), ff_(/)),/_(/))) exp [i (/c:_ + _,f-&r)] .

Where

= kL*,

[= eL*,

wL*
_.l= --

AU'

tb ¢0 c

_ = kAU: = h-5 = _'

and we define _ as follows

_= - +
AU AU 2

By definition l: is real positive number that represents

the wavenumber in the x-direction, _ is the wavenumber

in the z-direction, cr is the relative phase velocity, and

&i = _ is the amplification rate of the disturbance.
2

From the equations of motion if nonlinear and viscous

terms are neglected one can obtain art equation for the
y-component of the perturbation velocity as follows:

_l m ¢

_"- _'(T + A-)

h" T' A' h'

- _) _ + A i]e - ( -_ + A- ) _L--_ =0 (A1)

where the primes denote differentiation with respect to

.i2 _)2
A = -i]c - z-:- + m_i]c (h -

k 4

m _
m 2 _ 1-- --z-"

T

and from Crocco's Equation is

_ T(y)
T(y) -

T_ (1 + h(y))(1 _ T_)--_'1 ÷ 2

__(ml)2( 7 _ 1) (h(y) + 1)(h(y) -- 1)4

where

m! =

In this paper, the velocity profile function, h(y), is pe-
riodic such that

h(y + 2_) = h(y).

The velocity profile h(y) is not any exact solution of
the Navier-Stokes equation, but it can be considered as

a simple model of some real periodic flow.

The velocity profile h(y) discussed herein is given by

h(y) = 1 - 2f(y)

where the function f(y) is given by

1
f(y) =

1 + smh

,7= A(-I + _),

values of A for the ratios of (s/wN) used herein are
given in Table II and y goes from 0.0 to 2rr. The

profile function f(y) is adapted from an equation used
by Monkewitz is in a study of the absolute and con-

vective instability of two-dimensional wakes. Only two-
dimensional disturbances will be considered. A schematic

of the nozzle geometry is shown in Figure 1. A typical

velocity profile using A = 1.5 is shown in Figure 2.

A' = 2m2ik (h - 6)h'
4



Appendix B: Floquet-Bloch theory

Since the basic flow velocity profile , f(y), is peri-
odic, equation (A1) is an example of a Floquet-Bloch

problem. The mathematics of solving Floquet-Bloch
type problems is discussed by Ince 19, Hochstadt 20, and
Zwillinger 21. Applications to solid state physics are dis-

cussed by Sachs 2_, Brillouin 2a, and Dekker _4. Applica-
tions to spatially periodic flow are discussed by Lorenz 25,
Green_6,Beaumont Iz,and Gotoh _z,_s.

The paper by Beaumont Ir and the descriptionof the

Floquet-Blochtheorem by Hochstadtz°were particularly

usefulin guidingthisresearch.

A surveyofthe spatiallyperiodicflowliteratureispre-

sented by K. Gotoh and M.Y. Yamada _9.

The second orderdifferentialequation can be described

by a system of firstorder differentialequations.Let

_l = X2

so that Eq. AI can be rewrittenas the system

(0 I)Xl= D C X

where

h" T' A' h'

D= [_-__ _) + Aik - (_- + -_-)_--_

and

(Ill)

If q_(y) is a fundamental matrix solution of equation (
(B1) ) such that

q>(0) = I

where I is the identity matrix, then from the Floquet-
Bloch theorem

We now introducetwo solutionsof equation ( BI )

with initialvaluesat y = 0.0

¢,'(0) _2'(0) = 0 1

Next we seek the eigenvalues of @(2rr)

I¢0-) - ,II

I_,(2_)-_ _(2-) I= ¢1'(2_) ¢2(2_)-

= / - (¢t(2_) + ¢;(2.))#
+(¢t (2r)¢2'(2_r) -

¢_(2_)0_'(2.))
=/_2 _ (¢L(2rr) + ¢2'(2rr))/z + 1 = 0 (B2)

Since

¢_(2_)¢((2.)- ¢X2_)6,'(2.)= 1¢(2_)1= I¢(0)1= 1

The independent solutions of equation (B1) have the
form

¢ = X(y) exp(_y) = X(y) exp(ry)

The parameter r specifies the period of the eigenfunc-
tion ¢. If r is real the eigenfunction grows or decays at

infinity. Consequently, only imaginary values of F are
acceptable. Thus the eigenfunction oscillates in space
and is called a continuous mode. The disturbance with

ri = 1/n, where n is a nonzero integer, has a period 2nr.
One with ri = 0 has the same period 2r as the main flow,
while an irrational value of Fi means the disturbance is

aperiodic. Note that the parameter r does not appear
in the flow equation, but is due to the Floquet-Bloch
theorem.

Solutions of B1 are thus of the form

Xt(y + 2_) = taxi(y)

x:(y + 2r) = v2x2(y)

where Pt and/as represent the zeros of (B2), provided
they are distinct.

In general, these solutions will not be periodic.
Conditions for periodic solutions can be found as fol-

lows

Let #z = e i°' and #2 = e-iS'.

Then from equation (B2)

cos(O,)= ¢,(2_) + _'(2_) = _/2

Consequently, for a solution to be periodic 6 must be
real and I/f[ smaller than 2.

The constants /z are termed the characteristic multi-

pliers of the Floquet-Bloch system (B1) and the corre-
sponding characteristic exponents are determined by the

relation r = r_ + iri = toa(,)_,,-- _, + i_.
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Figure 9(a). Eigenvalue cr verses growth

rate _i _-- _ ( rn2 = 1.55 a/to N-_ 10 ).
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Figure 10_a). Eigenvalue cr verses growth

rate _i ---_ __ ( rn 2 = 1.6 s/wiv = 8.32 ).
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rate _i = _ ( m2 = 1.7 s/wAr = 9.169 ).
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Figure 12(b). r i verses growth rate

_i = _ ( m2 = 1.7 s/w N = 9.169 ).
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